Stratified Transfer Learning for Cross-domain Activity Recognition
نویسندگان
چکیده
In activity recognition, it is often expensive and time-consuming to acquire sufficient activity labels. To solve this problem, transfer learning leverages the labeled samples from the source domain to annotate the target domain which has few or none labels. Existing approaches typically consider learning a global domain shift while ignoring the intra-affinity between classes, which will hinder the performance of the algorithms. In this paper, we propose a novel and general cross-domain learning framework that can exploit the intra-affinity of classes to perform intra-class knowledge transfer. The proposed framework, referred to as Stratified Transfer Learning (STL), can dramatically improve the classification accuracy for cross-domain activity recognition. Specifically, STL first obtains pseudo labels for the target domain via majority voting technique. Then, it performs intra-class knowledge transfer iteratively to transform both domains into the same subspaces. Finally, the labels of target domain are obtained via the second annotation. To evaluate the performance of STL, we conduct comprehensive experiments on three large public activity recognition datasets (i.e. OPPORTUNITY, PAMAP2, and UCI DSADS), which demonstrates that STL significantly outperforms other state-of-the-art methods w.r.t. classification accuracy (improvement of 7.68%). Furthermore, we extensively investigate the performance of STL across different degrees of similarities and activity levels between domains. And we also discuss the potential of STL in other pervasive computing applications to provide empirical experience for future research.
منابع مشابه
Sample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملCross-domain activity recognition via transfer learning
In activity recognition, one major challenge is how to reduce the labeling effort one needs to make when recognizing a new set of activities. In this paper, we analyze the possibility of transferring knowledge from the available labeled data on a set of existing activities in one domain to help recognize the activities in another different but related domain. We found that such a knowledge tran...
متن کاملUse of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملShoulder Physiotherapy Exercise Recognition: Machine Learning the Inertial Signals from a Smartwatch
Objective: Participation in a physical therapy program is considered one of the greatest predictors of successful conservative management of common shoulder disorders. However, adherence to these protocols is often poor and typically worse for unsupervised home exercise programs. Currently, there are limited tools available for objective measurement of adherence in the home setting. The goal of...
متن کاملTransfer Learning for Activity Recognition via Sensor Mapping
Activity recognition aims to identify and predict human activities based on a series of sensor readings. In recent years, machine learning methods have become popular in solving activity recognition problems. A special difficulty for adopting machine learning methods is the workload to annotate a large number of sensor readings as training data. Labeling sensor readings for their corresponding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.00820 شماره
صفحات -
تاریخ انتشار 2017